In vitro effects of combined and sequential bone morphogenetic protein administration.

نویسندگان

  • Oneida A Arosarena
  • David Puleo
چکیده

OBJECTIVE To assess the effects of combined and sequential administration of bone morphogenetic protein 2 (BMP-2) and BMP-7 on osteoblastic differentiation compared with administration of single growth factors. DESIGN In vitro study of osseous differentiation in murine pluripotent cells using assays of extracellular matrix calcification, alkaline phosphatase activity, and expression of osseous markers. Mesenchymal cells were cultured with BMP-2, BMP-7, or a combination of these growth factors or were sequentially exposed to the growth factors. RESULTS Sequential administration of BMP-2 and BMP-7 resulted in increased extracellular matrix calcification and expression of osteocalcin, whereas all groups treated with BMP up-regulated expression of the osteoblastic transcription factor Runx2/cbfa1, type I collagen, and the inhibitory BMP second messenger Smad6. None of the experimental groups demonstrated increased expression of osteopontin or Smad1, and only cells treated with concurrent administration of BMP-2 and BMP-7 increased Smad5 expression. Alkaline phosphatase activity was increased from baseline only in cells treated with BMP-2 alone. CONCLUSIONS Culture with BMP-2 and BMP-7, their sequential administration, and their coadministration had variable effects on osseous differentiation in mesenchymal cells. These results demonstrate the need for increased understanding of the role of growth factors and their combinations in bone development and have important implications for the ongoing development of osteoinductive therapies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of Treatment with Bone Morphogenetic Protein 4 and Co-culture on Expression of Piwil2 Gene in Mouse Differentiated Embryonic Stem Cells

Background Specific growth factors and feeder layers seem to have important roles in in vitro embryonic stem cells (ESCs) differentiation. In this study,the effects of bone morphogenetic protein 4 (BMP4) and mouse embryonic fibroblasts (MEFs) co-culture system on germ cell differentiation from mouse ESCs were studied. MaterialsAndMethods Cell suspension was prepared from one-day-old embryoid bo...

متن کامل

Comparison of Cell Viability and Embryoid Body Size of Two Embryonic Stem Cell Lines After Different Exposure Times to Bone Morphogenetic Protein 4

Background: Activation of bone morphogenetic protein 4 (BMP4) signaling pathway in embryonic stem (ES) cells plays an important role in controlling cell proliferation, differentiation, and apoptosis. Adverse effects of BMP4 occur in a time dependent manner; however, little is known about the effect of different time exposure of this growth factor on cell number in culture media. In this study, ...

متن کامل

Single Nucleotide Polymorphism Analysis of the Bone Morphogenetic Protein Receptor IB and Growth and Differentiation Factor 9 Genes in Rayini Goats (Capra hircus)

The FecB, a mutation in the bone morphogenetic protein receptor IB (BMPR-IB) gene, which increases the fecundity of Booroola Merino sheep, and FecGH, a mutation in the Growth and Differentiation Factor 9 (GDF9), which affects the fecundity of Cambridge and Belclare sheep in a dose sensitive manner, were analyzed as candidate genes associated with the prolificacy in Rayini goats. These polymorph...

متن کامل

Efficient Method For Combined Electrical-Chemical Parthenogenetic Activation of Bovine Oocytes

Purpose: Parthenogenetic activation is among the crucial steps determining successful development of mammalian cloned embryos. This study, therefore, was conducted to evaluate the efficiency of a novel combined electrical-chemical artificial activation method for bovine cloning. Materials and Methods: In vitro matured bovine oocytes than were initially exposed to electrical pulse, used for cel...

متن کامل

Bone morphogenetic protein-6 promotes osteoblastic prostate cancer bone metastases through a dual mechanism.

Prostate cancer frequently metastasizes to bone where it forms osteoblastic lesions through unknown mechanisms. Bone morphogenetic proteins (BMP) are mediators of skeletal formation. Prostate cancer produces a variety of BMPs, including BMP-6. We tested the hypothesis that BMP-6 contributes to prostate cancer-induced osteosclerosis at bone metastatic sites. Prostate cancer cells and clinical ti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Archives of facial plastic surgery

دوره 9 4  شماره 

صفحات  -

تاریخ انتشار 2007